Partial Robust M-Regression
نویسندگان
چکیده
Partial Least Squares (PLS) is a standard statistical method in chemometrics. It can be considered as an incomplete, or “partial”, version of the Least Squares estimator of regression, applicable when high or perfect multicollinearity is present in the predictor variables. The Least Squares estimator is well-known to be an optimal estimator for regression, but only when the error terms are normally distributed. In absence of normality, and in particular when outliers are in the data set, other more robust regression estimators have better properties. In this paper a “partial” version of M-regression estimators will be defined. If an appropriate weighting scheme is chosen, partial M-estimators become entirely robust to any type of outlying points, and are called Partial Robust M-estimators. It is shown that partial robust M-regression outperforms existing methods for robust PLS regression in terms of statistical precision and computational speed, while keeping good robustness properties. The method is applied to a data set consisting of EPXMA spectra of archæological glass vessels. This data set contains several outliers, and the advantages of partial robust M-regression are illustrated. Applying partial robust M-regression yields much smaller prediction errors for noisy calibration samples than PLS. On the other hand, if the data follow perfectly well a normal model, the loss in efficiency to be paid for is very small.
منابع مشابه
A robust least squares fuzzy regression model based on kernel function
In this paper, a new approach is presented to fit arobust fuzzy regression model based on some fuzzy quantities. Inthis approach, we first introduce a new distance between two fuzzynumbers using the kernel function, and then, based on the leastsquares method, the parameters of fuzzy regression model isestimated. The proposed approach has a suitable performance to<b...
متن کاملSimultaneous robust estimation of multi-response surfaces in the presence of outliers
A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...
متن کاملRobust Methods for Partial Least Squares Regression
Partial Least Squares Regression (PLSR) is a linear regression technique developed to deal with high-dimensional regressors and one or several response variables. In this paper we introduce robustified versions of the SIMPLS algorithm being the leading PLSR algorithm because of its speed and efficiency. Because SIMPLS is based on the empirical cross-covariance matrix between the response variab...
متن کاملRobustness properties of a robust PLS regression method
The presence of multicollinearity in regression data is no exception in real life examples. Instead of applying ordinary regression methods, biased regression techniques such as Principal Component Regression and Ridge Regression have been developed to cope with such data sets. In this paper we consider Partial Least Squares (PLS) regression by means of the SIMPLS algorithm. Because the SIMPLS ...
متن کاملAn Alternative Robust Model for in situ Degradation Studies “Korkmaz-Uckardes”
The first purpose of this study is to present an alternative robust model in order to describe ruminal degradation kinetics of forages and to minimize the fitting problems. For this purpose, the Korkmaz-Uckardes (KU) model, which has a logarithmic structure, was developed. The second purpose of this study is to estimate, by using the Korkmaz-Uckardes (KU)model, the parameters tp (the time to pr...
متن کامل